aboutsummaryrefslogtreecommitdiff
path: root/modules/benchmark/fbench.c
diff options
context:
space:
mode:
Diffstat (limited to 'modules/benchmark/fbench.c')
-rw-r--r--modules/benchmark/fbench.c745
1 files changed, 0 insertions, 745 deletions
diff --git a/modules/benchmark/fbench.c b/modules/benchmark/fbench.c
deleted file mode 100644
index b5afc1bc..00000000
--- a/modules/benchmark/fbench.c
+++ /dev/null
@@ -1,745 +0,0 @@
-/*
-
- John Walker's Floating Point Benchmark, derived from...
-
- Marinchip Interactive Lens Design System
-
- John Walker December 1980
-
- By John Walker
- https://www.fourmilab.ch/
-
- This program may be used, distributed, and modified freely as
- long as the origin information is preserved.
-
- This is a complete optical design raytracing algorithm,
- stripped of its user interface and recast into portable C. It
- not only determines execution speed on an extremely floating
- point (including trig function) intensive real-world
- application, it checks accuracy on an algorithm that is
- exquisitely sensitive to errors. The performance of this
- program is typically far more sensitive to changes in the
- efficiency of the trigonometric library routines than the
- average floating point program.
-
- The benchmark may be compiled in two modes. If the symbol
- INTRIG is defined, built-in trigonometric and square root
- routines will be used for all calculations. Timings made with
- INTRIG defined reflect the machine's basic floating point
- performance for the arithmetic operators. If INTRIG is not
- defined, the system library <math.h> functions are used.
- Results with INTRIG not defined reflect the system's library
- performance and/or floating point hardware support for trig
- functions and square root. Results with INTRIG defined are a
- good guide to general floating point performance, while
- results with INTRIG undefined indicate the performance of an
- application which is math function intensive.
-
- Special note regarding errors in accuracy: this program has
- generated numbers identical to the last digit it formats and
- checks on the following machines, floating point
- architectures, and languages:
-
- Marinchip 9900 QBASIC IBM 370 double-precision (REAL * 8) format
-
- IBM PC / XT / AT Lattice C IEEE 64 bit, 80 bit temporaries
- High C same, in line 80x87 code
- BASICA "Double precision"
- Quick BASIC IEEE double precision, software routines
-
- Sun 3 C IEEE 64 bit, 80 bit temporaries,
- in-line 68881 code, in-line FPA code.
-
- MicroVAX II C Vax "G" format floating point
-
- Macintosh Plus MPW C SANE floating point, IEEE 64 bit format
- implemented in ROM.
-
- Inaccuracies reported by this program should be taken VERY
- SERIOUSLY INDEED, as the program has been demonstrated to be
- invariant under changes in floating point format, as long as
- the format is a recognised double precision format. If you
- encounter errors, please remember that they are just as likely
- to be in the floating point editing library or the
- trigonometric libraries as in the low level operator code.
-
- The benchmark assumes that results are basically reliable, and
- only tests the last result computed against the reference. If
- you're running on a suspect system you can compile this
- program with ACCURACY defined. This will generate a version
- which executes as an infinite loop, performing the ray trace
- and checking the results on every pass. All incorrect results
- will be reported.
-
- Representative timings are given below. All have been
- normalised as if run for 1000 iterations.
-
- Time in seconds Computer, Compiler, and notes
- Normal INTRIG
-
- 3466.00 4031.00 Commodore 128, 2 Mhz 8510 with software floating
- point. Abacus Software/Data-Becker Super-C 128,
- version 3.00, run in fast (2 Mhz) mode. Note:
- the results generated by this system differed
- from the reference results in the 8th to 10th
- decimal place.
-
- 3290.00 IBM PC/AT 6 Mhz, Microsoft/IBM BASICA version A3.00.
- Run with the "/d" switch, software floating point.
-
- 2131.50 IBM PC/AT 6 Mhz, Lattice C version 2.14, small model.
- This version of Lattice compiles subroutine
- calls which either do software floating point
- or use the 80x87. The machine on which I ran
- this had an 80287, but the results were so bad
- I wonder if it was being used.
-
- 1598.00 Macintosh Plus, MPW C, SANE Software floating point.
-
- 1582.13 Marinchip 9900 2 Mhz, QBASIC compiler with software
- floating point. This was a QBASIC version of the
- program which contained the identical algorithm.
-
- 404.00 IBM PC/AT 6 Mhz, Microsoft QuickBASIC version 2.0.
- Software floating point.
-
- 165.15 IBM PC/AT 6 Mhz, Metaware High C version 1.3, small
- model. This was compiled to call subroutines for
- floating point, and the machine contained an 80287
- which was used by the subroutines.
-
- 143.20 Macintosh II, MPW C, SANE calls. I was unable to
- determine whether SANE was using the 68881 chip or
- not.
-
- 121.80 Sun 3/160 16 Mhz, Sun C. Compiled with -fsoft switch
- which executes floating point in software.
-
- 78.78 110.11 IBM RT PC (Model 6150). IBM AIX 1.0 C compiler
- with -O switch.
-
- 75.2 254.0 Microsoft Quick C 1.0, in-line 8087 instructions,
- compiled with 80286 optimisation on. (Switches
- were -Ol -FPi87-G2 -AS). Small memory model.
-
- 69.50 IBM PC/AT 6Mhz, Borland Turbo BASIC 1.0. Compiled
- in "8087 required" mode to generate in-line
- code for the math coprocessor.
-
- 66.96 IBM PC/AT 6Mhz, Microsoft QuickBASIC 4.0. This
- release of QuickBASIC compiles code for the
- 80287 math coprocessor.
-
- 66.36 206.35 IBM PC/AT 6Mhz, Metaware High C version 1.3, small
- model. This was compiled with in-line code for the
- 80287 math coprocessor. Trig functions still call
- library routines.
-
- 63.07 220.43 IBM PC/AT, 6Mhz, Borland Turbo C, in-line 8087 code,
- small model, word alignment, no stack checking,
- 8086 code mode.
-
- 17.18 Apollo DN-3000, 12 Mhz 68020 with 68881, compiled
- with in-line code for the 68881 coprocessor.
- According to Apollo, the library routines are chosen
- at runtime based on coprocessor presence. Since the
- coprocessor was present, the library is supposed to
- use in-line floating point code.
-
- 15.55 27.56 VAXstation II GPX. Compiled and executed under
- VAX/VMS C.
-
- 15.14 37.93 Macintosh II, Unix system V. Green Hills 68020
- Unix compiler with in-line code for the 68881
- coprocessor (-O -ZI switches).
-
- 12.69 Sun 3/160 16 Mhz, Sun C. Compiled with -fswitch,
- which calls a subroutine to select the fastest
- floating point processor. This was using the 68881.
-
- 11.74 26.73 Compaq Deskpro 386, 16 Mhz 80386 with 16 Mhz 80387.
- Metaware High C version 1.3, compiled with in-line
- for the math coprocessor (but not optimised for the
- 80386/80387). Trig functions still call library
- routines.
-
- 8.43 30.49 Sun 3/160 16 Mhz, Sun C. Compiled with -f68881,
- generating in-line MC68881 instructions. Trig
- functions still call library routines.
-
- 6.29 25.17 Sun 3/260 25 Mhz, Sun C. Compiled with -f68881,
- generating in-line MC68881 instructions. Trig
- functions still call library routines.
-
- 4.57 Sun 3/260 25 Mhz, Sun FORTRAN 77. Compiled with
- -O -f68881, generating in-line MC68881 instructions.
- Trig functions are compiled in-line. This used
- the FORTRAN 77 version of the program, FBFORT77.F.
-
- 4.00 14.20 Sun386i/25 Mhz model 250, Sun C compiler.
-
- 4.00 14.00 Sun386i/25 Mhz model 250, Metaware C.
-
- 3.10 12.00 Compaq 386/387 25 Mhz running SCO Xenix 2.
- Compiled with Metaware HighC 386, optimized
- for 386.
-
- 3.00 12.00 Compaq 386/387 25MHZ optimized for 386/387.
-
- 2.96 5.17 Sun 4/260, Sparc RISC processor. Sun C,
- compiled with the -O2 switch for global
- optimisation.
-
- 2.47 COMPAQ 486/25, secondary cache disabled, High C,
- 486/387, inline f.p., small memory model.
-
- 2.20 3.40 Data General Motorola 88000, 16 Mhz, Gnu C.
-
- 1.56 COMPAQ 486/25, 128K secondary cache, High C, 486/387,
- inline f.p., small memory model.
-
- 0.66 1.50 DEC Pmax, Mips processor.
-
- 0.63 0.91 Sun SparcStation 2, Sun C (SunOS 4.1.1) with
- -O4 optimisation and "/usr/lib/libm.il" inline
- floating point.
-
- 0.60 1.07 Intel 860 RISC processor, 33 Mhz, Greenhills
- C compiler.
-
- 0.40 0.90 Dec 3MAX, MIPS 3000 processor, -O4.
-
- 0.31 0.90 IBM RS/6000, -O.
-
- 0.1129 0.2119 Dell Dimension XPS P133c, Pentium 133 MHz,
- Windows 95, Microsoft Visual C 5.0.
-
- 0.0883 0.2166 Silicon Graphics Indigo², MIPS R4400,
- 175 Mhz, "-O3".
-
- 0.0351 0.0561 Dell Dimension XPS R100, Pentium II 400 MHz,
- Windows 98, Microsoft Visual C 5.0.
-
- 0.0312 0.0542 Sun Ultra 2, UltraSPARC V9, 300 MHz, Solaris
- 2.5.1.
-
- 0.00862 0.01074 Dell Inspiron 9100, Pentium 4, 3.4 GHz, gcc -O3.
-
-*/
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-#ifndef INTRIG
-#include <math.h>
-#endif
-
-#define cot(x) (1.0 / tan(x))
-
-#define TRUE 1
-#define FALSE 0
-
-#define max_surfaces 10
-
-/* Local variables */
-
-/*static char tbfr[132];*/
-
-static short current_surfaces;
-static short paraxial;
-
-static double clear_aperture;
-
-static double aberr_lspher;
-static double aberr_osc;
-static double aberr_lchrom;
-
-static double max_lspher;
-static double max_osc;
-static double max_lchrom;
-
-static double radius_of_curvature;
-static double object_distance;
-static double ray_height;
-static double axis_slope_angle;
-static double from_index;
-static double to_index;
-
-static double spectral_line[9];
-static double s[max_surfaces][5];
-static double od_sa[2][2];
-
- /*static char outarr[8][80];*//* Computed output of program goes here */
-
-static int itercount; /* The iteration counter for the main loop
- in the program is made global so that
- the compiler should not be allowed to
- optimise out the loop over the ray
- tracing code. */
-
-#ifndef ITERATIONS
-#define ITERATIONS 1000
-#endif
-static int niter = ITERATIONS; /* Iteration counter */
-
-#if 0
-static char *refarr[] = { /* Reference results. These happen to
- be derived from a run on Microsoft
- Quick BASIC on the IBM PC/AT. */
-
- " Marginal ray 47.09479120920 0.04178472683",
- " Paraxial ray 47.08372160249 0.04177864821",
- "Longitudinal spherical aberration: -0.01106960671",
- " (Maximum permissible): 0.05306749907",
- "Offense against sine condition (coma): 0.00008954761",
- " (Maximum permissible): 0.00250000000",
- "Axial chromatic aberration: 0.00448229032",
- " (Maximum permissible): 0.05306749907"
-};
-#endif
-
-/* The test case used in this program is the design for a 4 inch
- achromatic telescope objective used as the example in Wyld's
- classic work on ray tracing by hand, given in Amateur Telescope
- Making, Volume 3. */
-
-static double testcase[4][4] = {
- {27.05, 1.5137, 63.6, 0.52},
- {-16.68, 1, 0, 0.138},
- {-16.68, 1.6164, 36.7, 0.38},
- {-78.1, 1, 0, 0}
-};
-
-/* Internal trig functions (used only if INTRIG is defined). These
- standard functions may be enabled to obtain timings that reflect
- the machine's floating point performance rather than the speed of
- its trig function evaluation. */
-
-#ifdef INTRIG
-
-/* The following definitions should keep you from getting intro trouble
- with compilers which don't let you redefine intrinsic functions. */
-
-#define sin I_sin
-#define cos I_cos
-#define tan I_tan
-#define sqrt I_sqrt
-#define atan I_atan
-#define atan2 I_atan2
-#define asin I_asin
-
-#define fabs(x) ((x < 0.0) ? -x : x)
-
-#define pic 3.1415926535897932
-
-/* Commonly used constants */
-
-static double pi = pic,
- twopi = pic * 2.0,
- piover4 = pic / 4.0, fouroverpi = 4.0 / pic, piover2 = pic / 2.0;
-
-/* Coefficients for ATAN evaluation */
-
-static double atanc[] = {
- 0.0,
- 0.4636476090008061165,
- 0.7853981633974483094,
- 0.98279372324732906714,
- 1.1071487177940905022,
- 1.1902899496825317322,
- 1.2490457723982544262,
- 1.2924966677897852673,
- 1.3258176636680324644
-};
-
-/* aint(x) Return integer part of number. Truncates towards 0 */
-
-double aint(x)
-double x;
-{
- long l;
-
- /* Note that this routine cannot handle the full floating point
- number range. This function should be in the machine-dependent
- floating point library! */
-
- l = x;
- if ((int) (-0.5) != 0 && l < 0)
- l++;
- x = l;
- return x;
-}
-
-/* sin(x) Return sine, x in radians */
-
-static double sin(x)
-double x;
-{
- int sign;
- double y, r, z;
-
- x = (((sign = (x < 0.0)) != 0) ? -x : x);
-
- if (x > twopi)
- x -= (aint(x / twopi) * twopi);
-
- if (x > pi) {
- x -= pi;
- sign = !sign;
- }
-
- if (x > piover2)
- x = pi - x;
-
- if (x < piover4) {
- y = x * fouroverpi;
- z = y * y;
- r = y *
- (((((((-0.202253129293E-13 * z + 0.69481520350522E-11) * z -
- 0.17572474176170806E-8) * z +
- 0.313361688917325348E-6) * z -
- 0.365762041821464001E-4) * z +
- 0.249039457019271628E-2) * z - 0.0807455121882807815) * z +
- 0.785398163397448310);
- } else {
- y = (piover2 - x) * fouroverpi;
- z = y * y;
- r = ((((((-0.38577620372E-12 * z + 0.11500497024263E-9) * z -
- 0.2461136382637005E-7) * z +
- 0.359086044588581953E-5) * z -
- 0.325991886926687550E-3) * z + 0.0158543442438154109) * z -
- 0.308425137534042452) * z + 1.0;
- }
- return sign ? -r : r;
-}
-
-/* cos(x) Return cosine, x in radians, by identity */
-
-static double cos(x)
-double x;
-{
- x = (x < 0.0) ? -x : x;
- if (x > twopi) /* Do range reduction here to limit */
- x = x - (aint(x / twopi) * twopi); /* roundoff on add of PI/2 */
- return sin(x + piover2);
-}
-
-/* tan(x) Return tangent, x in radians, by identity */
-
-static double tan(x)
-double x;
-{
- return sin(x) / cos(x);
-}
-
-/* sqrt(x) Return square root. Initial guess, then Newton-
- Raphson refinement */
-
-double sqrt(x)
-double x;
-{
- double c, cl, y;
- int n;
-
- if (x == 0.0)
- return 0.0;
-
- if (x < 0.0) {
- fprintf(stderr,
- "\nGood work! You tried to take the square root of %g",
- x);
- fprintf(stderr,
- "\nunfortunately, that is too complex for me to handle.\n");
- exit(1);
- }
-
- y = (0.154116 + 1.893872 * x) / (1.0 + 1.047988 * x);
-
- c = (y - x / y) / 2.0;
- cl = 0.0;
- for (n = 50; c != cl && n--;) {
- y = y - c;
- cl = c;
- c = (y - x / y) / 2.0;
- }
- return y;
-}
-
-/* atan(x) Return arctangent in radians,
- range -pi/2 to pi/2 */
-
-static double atan(x)
-double x;
-{
- int sign, l, y;
- double a, b, z;
-
- x = (((sign = (x < 0.0)) != 0) ? -x : x);
- l = 0;
-
- if (x >= 4.0) {
- l = -1;
- x = 1.0 / x;
- y = 0;
- goto atl;
- } else {
- if (x < 0.25) {
- y = 0;
- goto atl;
- }
- }
-
- y = aint(x / 0.5);
- z = y * 0.5;
- x = (x - z) / (x * z + 1);
-
- atl:
- z = x * x;
- b = ((((893025.0 * z + 49116375.0) * z + 425675250.0) * z +
- 1277025750.0) * z + 1550674125.0) * z + 654729075.0;
- a = (((13852575.0 * z + 216602100.0) * z + 891080190.0) * z +
- 1332431100.0) * z + 654729075.0;
- a = (a / b) * x + atanc[y];
- if (l)
- a = piover2 - a;
- return sign ? -a : a;
-}
-
-/* atan2(y,x) Return arctangent in radians of y/x,
- range -pi to pi */
-
-static double atan2(y, x)
-double y, x;
-{
- double temp;
-
- if (x == 0.0) {
- if (y == 0.0) /* Special case: atan2(0,0) = 0 */
- return 0.0;
- else if (y > 0)
- return piover2;
- else
- return -piover2;
- }
- temp = atan(y / x);
- if (x < 0.0) {
- if (y >= 0.0)
- temp += pic;
- else
- temp -= pic;
- }
- return temp;
-}
-
-/* asin(x) Return arcsine in radians of x */
-
-static double asin(x)
-double x;
-{
- if (fabs(x) > 1.0) {
- fprintf(stderr,
- "\nInverse trig functions lose much of their gloss when");
- fprintf(stderr,
- "\ntheir arguments are greater than 1, such as the");
- fprintf(stderr, "\nvalue %g you passed.\n", x);
- exit(1);
- }
- return atan2(x, sqrt(1 - x * x));
-}
-#endif
-
-/* Calculate passage through surface
-
- If the variable PARAXIAL is true, the trace through the
- surface will be done using the paraxial approximations.
- Otherwise, the normal trigonometric trace will be done.
-
- This routine takes the following inputs:
-
- RADIUS_OF_CURVATURE Radius of curvature of surface
- being crossed. If 0, surface is
- plane.
-
- OBJECT_DISTANCE Distance of object focus from
- lens vertex. If 0, incoming
- rays are parallel and
- the following must be specified:
-
- RAY_HEIGHT Height of ray from axis. Only
- relevant if OBJECT.DISTANCE == 0
-
- AXIS_SLOPE_ANGLE Angle incoming ray makes with axis
- at intercept
-
- FROM_INDEX Refractive index of medium being left
-
- TO_INDEX Refractive index of medium being
- entered.
-
- The outputs are the following variables:
-
- OBJECT_DISTANCE Distance from vertex to object focus
- after refraction.
-
- AXIS_SLOPE_ANGLE Angle incoming ray makes with axis
- at intercept after refraction.
-
-*/
-
-static void transit_surface()
-{
- double iang, /* Incidence angle */
- rang, /* Refraction angle */
- iang_sin, /* Incidence angle sin */
- rang_sin, /* Refraction angle sin */
- old_axis_slope_angle, sagitta;
-
- if (paraxial) {
- if (radius_of_curvature != 0.0) {
- if (object_distance == 0.0) {
- axis_slope_angle = 0.0;
- iang_sin = ray_height / radius_of_curvature;
- } else
- iang_sin = ((object_distance -
- radius_of_curvature) / radius_of_curvature) *
- axis_slope_angle;
-
- rang_sin = (from_index / to_index) * iang_sin;
- old_axis_slope_angle = axis_slope_angle;
- axis_slope_angle = axis_slope_angle + iang_sin - rang_sin;
- if (object_distance != 0.0)
- ray_height = object_distance * old_axis_slope_angle;
- object_distance = ray_height / axis_slope_angle;
- return;
- }
- object_distance = object_distance * (to_index / from_index);
- axis_slope_angle = axis_slope_angle * (from_index / to_index);
- return;
- }
-
- if (radius_of_curvature != 0.0) {
- if (object_distance == 0.0) {
- axis_slope_angle = 0.0;
- iang_sin = ray_height / radius_of_curvature;
- } else {
- iang_sin = ((object_distance -
- radius_of_curvature) / radius_of_curvature) *
- sin(axis_slope_angle);
- }
- iang = asin(iang_sin);
- rang_sin = (from_index / to_index) * iang_sin;
- old_axis_slope_angle = axis_slope_angle;
- axis_slope_angle = axis_slope_angle + iang - asin(rang_sin);
- sagitta = sin((old_axis_slope_angle + iang) / 2.0);
- sagitta = 2.0 * radius_of_curvature * sagitta * sagitta;
- object_distance =
- ((radius_of_curvature * sin(old_axis_slope_angle + iang)) *
- cot(axis_slope_angle)) + sagitta;
- return;
- }
-
- rang = -asin((from_index / to_index) * sin(axis_slope_angle));
- object_distance = object_distance * ((to_index *
- cos(-rang)) / (from_index *
- cos
- (axis_slope_angle)));
- axis_slope_angle = -rang;
-}
-
-/* Perform ray trace in specific spectral line */
-
-static void trace_line(line, ray_h)
-int line;
-double ray_h;
-{
- int i;
-
- object_distance = 0.0;
- ray_height = ray_h;
- from_index = 1.0;
-
- for (i = 1; i <= current_surfaces; i++) {
- radius_of_curvature = s[i][1];
- to_index = s[i][2];
- if (to_index > 1.0)
- to_index = to_index + ((spectral_line[4] -
- spectral_line[line]) /
- (spectral_line[3] -
- spectral_line[6])) * ((s[i][2] -
- 1.0) / s[i][3]);
- transit_surface();
- from_index = to_index;
- if (i < current_surfaces)
- object_distance = object_distance - s[i][4];
- }
-}
-
-/* Initialise when called the first time */
-
-void fbench()
-{
- int i, j;
- double od_fline, od_cline;
-
- spectral_line[1] = 7621.0; /* A */
- spectral_line[2] = 6869.955; /* B */
- spectral_line[3] = 6562.816; /* C */
- spectral_line[4] = 5895.944; /* D */
- spectral_line[5] = 5269.557; /* E */
- spectral_line[6] = 4861.344; /* F */
- spectral_line[7] = 4340.477; /* G' */
- spectral_line[8] = 3968.494; /* H */
-
- niter = 3000;
-
- /* Load test case into working array */
-
- clear_aperture = 4.0;
- current_surfaces = 4;
- for (i = 0; i < current_surfaces; i++)
- for (j = 0; j < 4; j++)
- s[i + 1][j + 1] = testcase[i][j];
-
- for (itercount = 0; itercount < niter; itercount++) {
- for (paraxial = 0; paraxial <= 1; paraxial++) {
-
- /* Do main trace in D light */
-
- trace_line(4, clear_aperture / 2.0);
- od_sa[paraxial][0] = object_distance;
- od_sa[paraxial][1] = axis_slope_angle;
- }
- paraxial = FALSE;
-
- /* Trace marginal ray in C */
-
- trace_line(3, clear_aperture / 2.0);
- od_cline = object_distance;
-
- /* Trace marginal ray in F */
-
- trace_line(6, clear_aperture / 2.0);
- od_fline = object_distance;
-
- aberr_lspher = od_sa[1][0] - od_sa[0][0];
- aberr_osc = 1.0 - (od_sa[1][0] * od_sa[1][1]) /
- (sin(od_sa[0][1]) * od_sa[0][0]);
- aberr_lchrom = od_fline - od_cline;
- max_lspher = sin(od_sa[0][1]);
-
- /* D light */
-
- max_lspher = 0.0000926 / (max_lspher * max_lspher);
- max_osc = 0.0025;
- max_lchrom = max_lspher;
- }
-}
-
-#ifdef __FBENCH_TEST__
-int main(void)
-{
- fbench();
-
- return 0;
-}
-#endif