/* * HardInfo - Displays System Information * Copyright (C) 2003-2006 L. A. F. Pereira * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2 or later. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "hardinfo.h" #include "devices.h" #include "cpu_util.h" #include "nice_name.h" #include "x86_data.h" #include "x86_data.c" /* * This function is partly based on x86cpucaps * by Osamu Kayasono */ void get_processor_strfamily(Processor * processor) { gint family = processor->family; gint model = processor->model; if (g_str_equal(processor->vendor_id, "GenuineIntel")) { if (family == 4) { processor->strmodel = g_strdup("i486 series"); } else if (family == 5) { if (model < 4) { processor->strmodel = g_strdup("Pentium Classic"); } else { processor->strmodel = g_strdup("Pentium MMX"); } } else if (family == 6) { if (model <= 1) { processor->strmodel = g_strdup("Pentium Pro"); } else if (model < 7) { processor->strmodel = g_strdup("Pentium II/Pentium II Xeon/Celeron"); } else if (model == 9) { processor->strmodel = g_strdup("Pentium M"); } else { processor->strmodel = g_strdup("Pentium III/Pentium III Xeon/Celeron/Core Duo/Core Duo 2"); } } else if (family > 6) { processor->strmodel = g_strdup("Pentium 4"); } else { processor->strmodel = g_strdup("i386 class"); } } else if (g_str_equal(processor->vendor_id, "AuthenticAMD")) { if (family == 4) { if (model <= 9) { processor->strmodel = g_strdup("AMD i80486 series"); } else { processor->strmodel = g_strdup("AMD 5x86"); } } else if (family == 5) { if (model <= 3) { processor->strmodel = g_strdup("AMD K5"); } else if (model <= 7) { processor->strmodel = g_strdup("AMD K6"); } else if (model == 8) { processor->strmodel = g_strdup("AMD K6-2"); } else if (model == 9) { processor->strmodel = g_strdup("AMD K6-III"); } else { processor->strmodel = g_strdup("AMD K6-2+/III+"); } } else if (family == 6) { if (model == 1) { processor->strmodel = g_strdup("AMD Athlon (K7)"); } else if (model == 2) { processor->strmodel = g_strdup("AMD Athlon (K75)"); } else if (model == 3) { processor->strmodel = g_strdup("AMD Duron (Spitfire)"); } else if (model == 4) { processor->strmodel = g_strdup("AMD Athlon (Thunderbird)"); } else if (model == 6) { processor->strmodel = g_strdup("AMD Athlon XP/MP/4 (Palomino)"); } else if (model == 7) { processor->strmodel = g_strdup("AMD Duron (Morgan)"); } else if (model == 8) { processor->strmodel = g_strdup("AMD Athlon XP/MP (Thoroughbred)"); } else if (model == 10) { processor->strmodel = g_strdup("AMD Athlon XP/MP (Barton)"); } else { processor->strmodel = g_strdup("AMD Athlon (unknown)"); } } else if (family > 6) { processor->strmodel = g_strdup("AMD Opteron/Athlon64/FX"); } else { processor->strmodel = g_strdup("AMD i386 class"); } } else if (g_str_equal(processor->vendor_id, "CyrixInstead")) { if (family == 4) { processor->strmodel = g_strdup("Cyrix 5x86"); } else if (family == 5) { processor->strmodel = g_strdup("Cyrix M1 (6x86)"); } else if (family == 6) { if (model == 0) { processor->strmodel = g_strdup("Cyrix M2 (6x86MX)"); } else if (model <= 5) { processor->strmodel = g_strdup("VIA Cyrix III (M2 core)"); } else if (model == 6) { processor->strmodel = g_strdup("VIA Cyrix III (WinChip C5A)"); } else if (model == 7) { processor->strmodel = g_strdup("VIA Cyrix III (WinChip C5B/C)"); } else { processor->strmodel = g_strdup("VIA Cyrix III (WinChip C5C-T)"); } } else { processor->strmodel = g_strdup("Cyrix i386 class"); } } else if (g_str_equal(processor->vendor_id, "CentaurHauls")) { if (family == 5) { if (model <= 4) { processor->strmodel = g_strdup("Centaur WinChip C6"); } else if (model <= 8) { processor->strmodel = g_strdup("Centaur WinChip 2"); } else { processor->strmodel = g_strdup("Centaur WinChip 2A"); } } else { processor->strmodel = g_strdup("Centaur i386 class"); } } else if (g_str_equal(processor->vendor_id, "GenuineTMx86")) { processor->strmodel = g_strdup("Transmeta Crusoe TM3x00/5x00"); } else { processor->strmodel = g_strdup("Unknown"); } } static gchar *__cache_get_info_as_string(Processor *processor) { gchar *result = g_strdup(""); GSList *cache_list; ProcessorCache *cache; if (!processor->cache) { return g_strdup(_("Cache information not available=\n")); } for (cache_list = processor->cache; cache_list; cache_list = cache_list->next) { cache = (ProcessorCache *)cache_list->data; result = h_strdup_cprintf(_("Level %d (%s)=%d-way set-associative, %d sets, %dKB size\n"), result, cache->level, C_("cache-type", cache->type), cache->ways_of_associativity, cache->number_of_sets, cache->size); } return result; } /* This is not used directly, but creates translatable strings for * the type string returned from /sys/.../cache */ //static const char* cache_types[] = { // NC_("cache-type", /*/cache type, as appears in: Level 1 (Data)*/ "Data"), // NC_("cache-type", /*/cache type, as appears in: Level 1 (Instruction)*/ "Instruction"), // NC_("cache-type", /*/cache type, as appears in: Level 2 (Unified)*/ "Unified") //}; static void __cache_obtain_info(Processor *processor) { ProcessorCache *cache; gchar *endpoint, *entry, *index; gchar *uref = NULL; gint i; gint processor_number = processor->id; endpoint = g_strdup_printf("/sys/devices/system/cpu/cpu%d/cache", processor_number); for (i = 0; ; i++) { cache = g_new0(ProcessorCache, 1); index = g_strdup_printf("index%d/", i); entry = g_strconcat(index, "type", NULL); cache->type = h_sysfs_read_string(endpoint, entry); g_free(entry); if (!cache->type) { g_free(cache); g_free(index); goto fail; } entry = g_strconcat(index, "level", NULL); cache->level = h_sysfs_read_int(endpoint, entry); g_free(entry); entry = g_strconcat(index, "number_of_sets", NULL); cache->number_of_sets = h_sysfs_read_int(endpoint, entry); g_free(entry); entry = g_strconcat(index, "physical_line_partition", NULL); cache->physical_line_partition = h_sysfs_read_int(endpoint, entry); g_free(entry); entry = g_strconcat(index, "size", NULL); cache->size = h_sysfs_read_int(endpoint, entry); g_free(entry); entry = g_strconcat(index, "ways_of_associativity", NULL); cache->ways_of_associativity = h_sysfs_read_int(endpoint, entry); g_free(entry); /* unique cache references: id is nice, but share_cpu_list can be * used if it is not available. */ entry = g_strconcat(index, "id", NULL); uref = h_sysfs_read_string(endpoint, entry); g_free(entry); if (uref != NULL && *uref != 0 ) cache->uid = atoi(uref); else cache->uid = -1; g_free(uref); entry = g_strconcat(index, "shared_cpu_list", NULL); cache->shared_cpu_list = h_sysfs_read_string(endpoint, entry); g_free(entry); /* reacharound */ entry = g_strconcat(index, "../../topology/physical_package_id", NULL); cache->phy_sock = h_sysfs_read_int(endpoint, entry); g_free(entry); g_free(index); processor->cache = g_slist_append(processor->cache, cache); } fail: g_free(endpoint); } #define khzint_to_mhzdouble(k) (((double)k)/1000) #define cmp_clocks_test(f) if (a->f < b->f) return -1; if (a->f > b->f) return 1; static gint cmp_cpufreq_data(cpufreq_data *a, cpufreq_data *b) { gint i = 0; i = g_strcmp0(a->shared_list, b->shared_list); if (i!=0) return i; cmp_clocks_test(cpukhz_max); cmp_clocks_test(cpukhz_min); return 0; } static gint cmp_cpufreq_data_ignore_affected(cpufreq_data *a, cpufreq_data *b) { cmp_clocks_test(cpukhz_max); cmp_clocks_test(cpukhz_min); return 0; } gchar *clocks_summary(GSList * processors) { gchar *ret = g_strdup_printf("[%s]\n", _("Clocks")); GSList *all_clocks = NULL, *uniq_clocks = NULL; GSList *l; Processor *p; cpufreq_data *c, *cur = NULL; gint cur_count = 0; /* create list of all clock references */ for (l = processors; l; l = l->next) { p = (Processor*)l->data; if (p->cpufreq && p->cpufreq->cpukhz_max > 0) { all_clocks = g_slist_prepend(all_clocks, p->cpufreq); } } if (g_slist_length(all_clocks) == 0) { ret = h_strdup_cprintf("%s=\n", ret, _("(Not Available)") ); g_slist_free(all_clocks); return ret; } /* ignore duplicate references */ all_clocks = g_slist_sort(all_clocks, (GCompareFunc)cmp_cpufreq_data); for (l = all_clocks; l; l = l->next) { c = (cpufreq_data*)l->data; if (!cur) { cur = c; } else { if (cmp_cpufreq_data(cur, c) != 0) { uniq_clocks = g_slist_prepend(uniq_clocks, cur); cur = c; } } } uniq_clocks = g_slist_prepend(uniq_clocks, cur); uniq_clocks = g_slist_reverse(uniq_clocks); cur = 0, cur_count = 0; /* count and list clocks */ for (l = uniq_clocks; l; l = l->next) { c = (cpufreq_data*)l->data; if (!cur) { cur = c; cur_count = 1; } else { if (cmp_cpufreq_data_ignore_affected(cur, c) != 0) { ret = h_strdup_cprintf(_("%.2f-%.2f %s=%dx\n"), ret, khzint_to_mhzdouble(cur->cpukhz_min), khzint_to_mhzdouble(cur->cpukhz_max), _("MHz"), cur_count); cur = c; cur_count = 1; } else { cur_count++; } } } ret = h_strdup_cprintf(_("%.2f-%.2f %s=%dx\n"), ret, khzint_to_mhzdouble(cur->cpukhz_min), khzint_to_mhzdouble(cur->cpukhz_max), _("MHz"), cur_count); g_slist_free(all_clocks); g_slist_free(uniq_clocks); return ret; } #define cmp_cache_test(f) if (a->f < b->f) return -1; if (a->f > b->f) return 1; static gint cmp_cache(ProcessorCache *a, ProcessorCache *b) { gint i = 0; cmp_cache_test(phy_sock); i = g_strcmp0(a->type, b->type); if (i!=0) return i; cmp_cache_test(level); cmp_cache_test(size); cmp_cache_test(uid); /* uid is unique among caches with the same (type, level) */ if (a->uid == -1) { /* if id wasn't available, use shared_cpu_list as a unique ref */ i = g_strcmp0(a->shared_cpu_list, b->shared_cpu_list); if (i!=0) return i; } return 0; } static gint cmp_cache_ignore_id(ProcessorCache *a, ProcessorCache *b) { gint i = 0; cmp_cache_test(phy_sock); i = g_strcmp0(a->type, b->type); if (i!=0) return i; cmp_cache_test(level); cmp_cache_test(size); return 0; } gchar *caches_summary(GSList * processors) { gchar *ret = g_strdup_printf("[%s]\n", _("Caches")); GSList *all_cache = NULL, *uniq_cache = NULL; GSList *tmp, *l; Processor *p; ProcessorCache *c, *cur = NULL; gint cur_count = 0; /* create list of all cache references */ for (l = processors; l; l = l->next) { p = (Processor*)l->data; if (p->cache) { tmp = g_slist_copy(p->cache); if (all_cache) { all_cache = g_slist_concat(all_cache, tmp); } else { all_cache = tmp; } } } if (g_slist_length(all_cache) == 0) { ret = h_strdup_cprintf("%s=\n", ret, _("(Not Available)") ); g_slist_free(all_cache); return ret; } /* ignore duplicate references */ all_cache = g_slist_sort(all_cache, (GCompareFunc)cmp_cache); for (l = all_cache; l; l = l->next) { c = (ProcessorCache*)l->data; if (!cur) { cur = c; } else { if (cmp_cache(cur, c) != 0) { uniq_cache = g_slist_prepend(uniq_cache, cur); cur = c; } } } uniq_cache = g_slist_prepend(uniq_cache, cur); uniq_cache = g_slist_reverse(uniq_cache); cur = 0, cur_count = 0; /* count and list caches */ for (l = uniq_cache; l; l = l->next) { c = (ProcessorCache*)l->data; if (!cur) { cur = c; cur_count = 1; } else { if (cmp_cache_ignore_id(cur, c) != 0) { ret = h_strdup_cprintf(_("Level %d (%s)#%d=%dx %dKB (%dKB), %d-way set-associative, %d sets\n"), ret, cur->level, C_("cache-type", cur->type), cur->phy_sock, cur_count, cur->size, cur->size * cur_count, cur->ways_of_associativity, cur->number_of_sets); cur = c; cur_count = 1; } else { cur_count++; } } } ret = h_strdup_cprintf(_("Level %d (%s)#%d=%dx %dKB (%dKB), %d-way set-associative, %d sets\n"), ret, cur->level, C_("cache-type", cur->type), cur->phy_sock, cur_count, cur->size, cur->size * cur_count, cur->ways_of_associativity, cur->number_of_sets); g_slist_free(all_cache); g_slist_free(uniq_cache); return ret; } #define PROC_SCAN_READ_BUFFER_SIZE 1024 GSList *processor_scan(void) { GSList *procs = NULL, *l = NULL; Processor *processor = NULL; FILE *cpuinfo; gchar *buffer; buffer = g_malloc(PROC_SCAN_READ_BUFFER_SIZE); cpuinfo = fopen(PROC_CPUINFO, "r"); if (!cpuinfo) return NULL; while (fgets(buffer, PROC_SCAN_READ_BUFFER_SIZE, cpuinfo)) { int rlen = strlen(buffer); if (rlen >= PROC_SCAN_READ_BUFFER_SIZE - 1) { fprintf(stderr, "Warning: truncated a line (probably flags list) longer than %d bytes while reading %s.\n", PROC_SCAN_READ_BUFFER_SIZE, PROC_CPUINFO); } gchar **tmp = g_strsplit(buffer, ":", 2); if (!tmp[1] || !tmp[0]) { g_strfreev(tmp); continue; } tmp[0] = g_strstrip(tmp[0]); tmp[1] = g_strstrip(tmp[1]); if (g_str_has_prefix(tmp[0], "processor")) { /* finish previous */ if (processor) procs = g_slist_append(procs, processor); /* start next */ processor = g_new0(Processor, 1); processor->id = atol(tmp[1]); g_strfreev(tmp); continue; } if (processor) { get_str("model name", processor->model_name); get_str("vendor_id", processor->vendor_id); get_str("flags", processor->flags); get_str("bugs", processor->bugs); get_str("power management", processor->pm); get_str("microcode", processor->microcode); get_int("cache size", processor->cache_size); get_float("cpu MHz", processor->cpu_mhz); get_float("bogomips", processor->bogomips); get_str("fpu", processor->has_fpu); get_str("fdiv_bug", processor->bug_fdiv); get_str("hlt_bug", processor->bug_hlt); get_str("f00f_bug", processor->bug_f00f); get_str("coma_bug", processor->bug_coma); /* sep_bug? */ get_int("model", processor->model); get_int("cpu family", processor->family); get_int("stepping", processor->stepping); } g_strfreev(tmp); } fclose(cpuinfo); g_free(buffer); /* finish last */ if (processor) procs = g_slist_append(procs, processor); for (l = procs; l; l = l->next) { processor = (Processor *) l->data; STRIFNULL(processor->microcode, _("(Not Available)") ); get_processor_strfamily(processor); __cache_obtain_info(processor); #define NULLIFNOTYES(f) if (processor->f) if (strcmp(processor->f, "yes") != 0) { g_free(processor->f); processor->f = NULL; } NULLIFNOTYES(bug_fdiv); NULLIFNOTYES(bug_hlt); NULLIFNOTYES(bug_f00f); NULLIFNOTYES(bug_coma); if (processor->bugs == NULL || g_strcmp0(processor->bugs, "") == 0) { g_free(processor->bugs); /* make bugs list on old kernels that don't offer one */ processor->bugs = g_strdup_printf("%s%s%s%s%s%s%s%s%s%s", /* the oldest bug workarounds indicated in /proc/cpuinfo */ processor->bug_fdiv ? " fdiv" : "", processor->bug_hlt ? " _hlt" : "", processor->bug_f00f ? " f00f" : "", processor->bug_coma ? " coma" : "", /* these bug workarounds were reported as "features" in older kernels */ processor_has_flag(processor->flags, "fxsave_leak") ? " fxsave_leak" : "", processor_has_flag(processor->flags, "clflush_monitor") ? " clflush_monitor" : "", processor_has_flag(processor->flags, "11ap") ? " 11ap" : "", processor_has_flag(processor->flags, "tlb_mmatch") ? " tlb_mmatch" : "", processor_has_flag(processor->flags, "apic_c1e") ? " apic_c1e" : "", ""); /* just to make adding lines easier */ g_strchug(processor->bugs); } if (processor->pm == NULL || g_strcmp0(processor->pm, "") == 0) { g_free(processor->pm); /* make power management list on old kernels that don't offer one */ processor->pm = g_strdup_printf("%s%s", /* "hw_pstate" -> "hwpstate" */ processor_has_flag(processor->flags, "hw_pstate") ? " hwpstate" : "", ""); /* just to make adding lines easier */ g_strchug(processor->pm); } /* topo & freq */ processor->cpufreq = cpufreq_new(processor->id); processor->cputopo = cputopo_new(processor->id); if (processor->cpufreq->cpukhz_max) processor->cpu_mhz = processor->cpufreq->cpukhz_max / 1000; nice_name_x86_cpuid_model_string(processor->model_name); } return procs; } gchar *processor_get_capabilities_from_flags(gchar *strflags, gchar *lookup_prefix) { gchar **flags, **old; gchar tmp_flag[64] = ""; const gchar *meaning; gchar *tmp = NULL; gint j = 0, i = 0; flags = g_strsplit(strflags, " ", 0); old = flags; while (flags[j]) { if ( sscanf(flags[j], "[%d]", &i)==1 ) { /* Some flags are indexes, like [13], and that looks like * a new section to hardinfo shell */ tmp = h_strdup_cprintf("(%s%d)=\n", tmp, (lookup_prefix) ? lookup_prefix : "", i ); } else { sprintf(tmp_flag, "%s%s", lookup_prefix, flags[j]); meaning = x86_flag_meaning(tmp_flag); if (meaning) { tmp = h_strdup_cprintf("%s=%s\n", tmp, flags[j], meaning); } else { tmp = h_strdup_cprintf("%s=\n", tmp, flags[j]); } } j++; } if (tmp == NULL || g_strcmp0(tmp, "") == 0) tmp = g_strdup_printf("%s=%s\n", "empty", _("Empty List")); g_strfreev(old); return tmp; } gchar *processor_get_detailed_info(Processor * processor) { gchar *tmp_flags, *tmp_bugs, *tmp_pm, *tmp_cpufreq, *tmp_topology, *ret, *cache_info; tmp_flags = processor_get_capabilities_from_flags(processor->flags, ""); tmp_bugs = processor_get_capabilities_from_flags(processor->bugs, "bug:"); tmp_pm = processor_get_capabilities_from_flags(processor->pm, "pm:"); cache_info = __cache_get_info_as_string(processor); tmp_topology = cputopo_section_str(processor->cputopo); tmp_cpufreq = cpufreq_section_str(processor->cpufreq); ret = g_strdup_printf("[%s]\n" "%s=%s\n" "%s=%d, %d, %d (%s)\n" /* family, model, stepping (decoded name) */ "$^$%s=%s\n" /* vendor */ "%s=%s\n" /* microcode */ "[%s]\n" /* configuration */ "%s=%d %s\n" /* cache size (from cpuinfo) */ "%s=%.2f %s\n" /* frequency */ "%s=%.2f\n" /* bogomips */ "%s=%s\n" /* byte order */ "%s" /* topology */ "%s" /* frequency scaling */ "[%s]\n" /* cache */ "%s\n" "[%s]\n" /* pm */ "%s" "[%s]\n" /* bugs */ "%s" "[%s]\n" /* flags */ "%s", _("Processor"), _("Model Name"), processor->model_name, _("Family, model, stepping"), processor->family, processor->model, processor->stepping, processor->strmodel, _("Vendor"), processor->vendor_id, _("Microcode Version"), processor->microcode, _("Configuration"), _("Cache Size"), processor->cache_size, _("kb"), _("Frequency"), processor->cpu_mhz, _("MHz"), _("BogoMips"), processor->bogomips, _("Byte Order"), byte_order_str(), tmp_topology, tmp_cpufreq, _("Cache"), cache_info, _("Power Management"), tmp_pm, _("Bug Workarounds"), tmp_bugs, _("Capabilities"), tmp_flags ); g_free(tmp_flags); g_free(tmp_bugs); g_free(tmp_pm); g_free(cache_info); g_free(tmp_cpufreq); g_free(tmp_topology); return ret; } gchar *processor_name(GSList * processors) { return processor_name_default(processors); } gchar *processor_describe(GSList * processors) { return processor_describe_default(processors); } gchar *dmi_socket_info() { gchar *ret; dmi_type dt = 4; guint i; dmi_handle_list *hl = dmidecode_handles(&dt); if (!hl) { ret = g_strdup_printf("[%s]\n%s=%s\n", _("Socket Information"), _("Result"), (getuid() == 0) ? _("(Not available)") : _("(Not available; Perhaps try running HardInfo as root.)") ); } else { ret = g_strdup(""); for(i = 0; i < hl->count; i++) { dmi_handle h = hl->handles[i]; gchar *upgrade = dmidecode_match("Upgrade", &dt, &h); gchar *socket = dmidecode_match("Socket Designation", &dt, &h); gchar *bus_clock_str = dmidecode_match("External Clock", &dt, &h); gchar *voltage_str = dmidecode_match("Voltage", &dt, &h); gchar *max_speed_str = dmidecode_match("Max Speed", &dt, &h); ret = h_strdup_cprintf("[%s (%d) %s]\n" "%s=0x%x\n" "%s=%s\n" "%s=%s\n" "%s=%s\n" "%s=%s\n", ret, _("CPU Socket"), i, socket, _("DMI Handle"), h, _("Type"), upgrade, _("Voltage"), voltage_str, _("External Clock"), bus_clock_str, _("Max Frequency"), max_speed_str ); g_free(upgrade); g_free(socket); g_free(bus_clock_str); g_free(voltage_str); g_free(max_speed_str); } dmi_handle_list_free(hl); } return ret; } gchar *processor_meta(GSList * processors) { gchar *meta_cpu_name = processor_name(processors); gchar *meta_cpu_desc = processor_describe(processors); gchar *meta_freq_desc = processor_frequency_desc(processors); gchar *meta_clocks = clocks_summary(processors); gchar *meta_caches = caches_summary(processors); gchar *meta_dmi = dmi_socket_info(); gchar *ret = NULL; UNKIFNULL(meta_cpu_desc); ret = g_strdup_printf("[%s]\n" "%s=%s\n" "%s=%s\n" "%s=%s\n" "%s" "%s" "%s", _("Package Information"), _("Name"), meta_cpu_name, _("Topology"), meta_cpu_desc, _("Logical CPU Config"), meta_freq_desc, meta_clocks, meta_caches, meta_dmi); g_free(meta_cpu_desc); g_free(meta_freq_desc); g_free(meta_clocks); g_free(meta_caches); return ret; } gchar *processor_get_info(GSList * processors) { Processor *processor; gchar *ret, *tmp, *hashkey; gchar *meta; /* becomes owned by more_info? no need to free? */ GSList *l; gchar *icons=g_strdup(""); tmp = g_strdup_printf("$!CPU_META$%s=|Summary\n", "all"); meta = processor_meta(processors); moreinfo_add_with_prefix("DEV", "CPU_META", meta); for (l = processors; l; l = l->next) { processor = (Processor *) l->data; gchar *model_name = g_strdup(processor->model_name); const Vendor *v = vendor_match(processor->vendor_id, NULL); if (v) tag_vendor(&model_name, 0, v->name_short ? v->name_short : v->name, v->ansi_color, params.fmt_opts); // bp: not convinced it looks good, but here's how it would be done... //icons = h_strdup_cprintf("Icon$CPU%d$cpu%d=processor.png\n", icons, processor->id, processor->id); tmp = g_strdup_printf("%s$CPU%d$cpu%d=%.2f %s|%s|%d:%d\n", tmp, processor->id, processor->id, processor->cpu_mhz, _("MHz"), model_name, processor->cputopo->socket_id, processor->cputopo->core_id); hashkey = g_strdup_printf("CPU%d", processor->id); moreinfo_add_with_prefix("DEV", hashkey, processor_get_detailed_info(processor)); g_free(hashkey); g_free(model_name); } ret = g_strdup_printf("[$ShellParam$]\n" "ViewType=1\n" "ColumnTitle$TextValue=%s\n" "ColumnTitle$Value=%s\n" "ColumnTitle$Extra1=%s\n" "ColumnTitle$Extra2=%s\n" "ShowColumnHeaders=true\n" "%s" "[Processors]\n" "%s", _("Device"), _("Frequency"), _("Model"), _("Socket:Core"), icons, tmp); g_free(tmp); g_free(icons); // now here's something fun... struct Info *i = info_unflatten(ret); g_free(ret); ret = info_flatten(i); return ret; }